DIGITAL SIGNAL PROCESSING

1

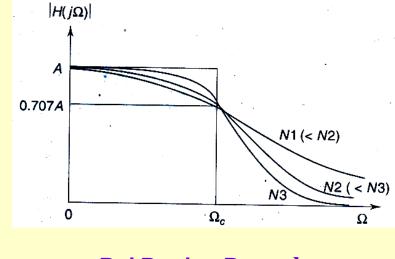
UNIT-2 (Lecture-5)

Design of Infinite Impulse Response Digital Filters: Butterworth Filters

DIGITAL SIGNAL PROCESSING EEC-602 **Butterworth** low pass filter has a magnitude response given by $H(j\Omega) = \frac{A}{[1+(\Omega/\Omega_c)^{2N}]^{0.5}}$ -----(1) Where A is the filter gain and Ω_c is the 3dB cut-off

Where A is the filter gain and Ω_c is the 3dB cut-off frequency and N is the order of the filter. The magnitude response of the Butterworth fitter is shown

in figure.



2

Raj Ranjan Prasad

3

Butterworth Filters

The magnitude response has a maximally flat passband and stop-band. It can be seen that by increasing the filter order N, the Butterworth response approximates the ideal response. However, the phase response of the Butterworth filter becomes more nonlinear with increasing N.

The design parameters of the Butterworth filter are obtained by considering the low-pass filter with the desired specifications as given below.

$$\delta_{1} \leq |H(e^{j\omega})| \leq 1, 0 \leq \omega \leq \omega_{1}$$

$$|H(e^{j\omega})| \leq \delta_{2}, \omega_{2} \leq \omega \leq \pi$$
(2a)

Raj Ranjan Prasad

DIGITAL SIGNAL PROCESSING **EEC-602 Butterworth Filters** Using eq. (1) in eq. (2) and if A=1, we get $\delta_1^2 \le \frac{1}{1 + (\Omega_1 / \Omega_c)^{2N}} \le 1$ -----(3a) $\frac{1}{1 + (\Omega_2 / \Omega_2)^{2N}} \le \delta_2^2 + \dots + (3b)$ Eq.(3) can be written in the form $(\dot{\Omega}_2/\Omega_c)^{2N} \ge \frac{1}{\delta_2^2} - 1 \qquad (4b)$ Assume equality and divide eq.(4b) by eq. (4a) $(\Omega_2/\Omega_1)^{2N} = (1/\delta_2^2 - 1)/(1/\delta_1^2 - 1)$ (5) $N = \frac{1}{2} \frac{\log \left\{ [(1/\delta_2^2 - 1)/(1/\delta_1^2 - 1)] \right\}}{\log (\Omega_0/\Omega_1)} - (6)$

Raj Ranjan Prasad

DIGITAL SIGNAL PROCESSING EEC-602 Butterworth Fiters

The value of N is chosen to next nearest integer to the value of N.

Using eq. (4a), we get

$$\Omega_{c} = \frac{\Omega_{1}}{\left[(1/\delta_{1}^{2}) - 1 \right]^{1/2N}} -(7)$$

The value of Ω_1 and Ω_2 are obtained using $\Omega = 2/T$ [tan($\omega/2$)] for bilinear transformation or $\Omega = \omega/T$ impulse invariant transformation.

digital signal processing EEC-602 Butterworth Fitters

The transfer function of the Butterworth filter is usually written in the factored form as given below

$$H(s) = \prod_{k=1}^{N/2} \frac{B_k \,\Omega_c^2}{s^2 + b_k \,\Omega_c \,s + c_k \,\Omega_c^2} \quad N = 2, \, 4, \, 6, \, \dots$$

or,

The coefficients b_k and c_k are given by $b_k = 2 \sin \left[(2k - 1) \pi/2N \right]$ and $c_k = 1$ -----(10)

DIGITAL SIGNAL PROCESSING EEC-602 Butterworth Fiters

The parameter B_k can be obtained from

$$A = \prod_{k=1}^{N/2} B_k, \text{ for even } N \qquad (11)$$
$$A = \prod_{k=1}^{(N-1)/2} B_k, \text{ for odd } N \qquad (12)$$

The system function of the equivalent digital filter is obtained from H(s) (eq.8 or eq.9) using the specified transformation technique (bilinear transformation or Impulse invariant transformation)